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Summary. 

Integrating and differentiating matrices allow the numerical integration and differentiation of functions whose 
values are known at points of a discrete grid. Previous derivations of these matrices have been restricted to 
one-dimensional grids or to rectangular grids with uniform spacing in at least one direction. The present work 
develops integrating and differentiating matrices for rectangular grids with non-uniform spacing in both 
directions. The use of these matrices as operators to reformulate boundary-value problems on rectangular 
domains as matrix problems for a finite-dimensional solution vector is considered. The method requires 
non-uniform grids which include "near-boundary" points. An eigenvalue problem for the transverse vibrations 
of a simply-supported rectangular plate is solved to illustrate the method. 

1. Introduction 

Rotat ing-beam configurations have traditionally been used to study the vibrations and 
aeroelastic stability of rotating structures such as helicopter rotor blades and propeller 
blades. More recently, models involving elastic plates have been proposed to include the 
effects of spanwise variations in material properties. The fourth-order boundary-value 
problems associated with both the beam and plate models to not, in general, have useful 
closed-form solutions. Consequently, most theoretical work on these problems has been 
asymptotic or numerical in nature. 

In one approach to the numerical solution of these problems, harmonic time depen- 
dence is assumed to reduce the governing partial differential equation to a differential 
equation in space variables which includes an eigenvalue. For beam problems, this is an 
ordinary differential equation. The fundamental derivative which represents beam curva- 
ture may be taken as a new dependent variable, and the eigenvalue problem for the beam 
can be reformulated as an integro-differential equation [3,6,9]. This equation may be 
conveniently expressed using integral, differential, and boundary-evaluation operators. 
The operator equation for the continuous solution may further be converted to a matrix 
operator equation for a finite-dimensional solution vector by evaluating the continuous 
equation at a finite set of discrete grid points which span the interval of interest. A key 
question is now the manner in which the matrix operators are approximated. 
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For beam problems, one method for approximating the integral and differential 
operators involves the use of integrating matrices [1,4,8] and differentiating matrices [2,7]. 
In the simplest terms, these matrices provide, respectively, a means of numerically 
integrating and differentiating a function whose values are known at a finite set of 
discrete grid points. A key property of both integrating and differentiating matrices is 
that their derivation requires only knowledge of the grid points, and no information is 
needed about the function to be numerically integrated or differentiated. In the case of a 
beam problem with its single space variable, this property allows the integrating and 
differentiating matrices based on one-dimensional grids to be used directly as approxima- 
tions for the integral and differential operators in the matrix operator form of the 
eigenvalue problem. The result of this approximation is a straightforward matrix eigen- 
value problem which can be solved by standard methods. This approach has proved 
capable of efficiently handling a wide variety of beam problems including beams with 
concentrated masses, follower forces, and point loadings [6]. 

For vibration and buckling problems which involve two-dimensional elastic plates, 
removal of the time dependence from the original boundary-value problem yields an 
eigenvalue problem which continues to be governed by a partial differential equation. By 
analogy with the one-dimensional case, it would seem desirable to reformulate this 
eigenvalue problem as a matrix integro-partial differential equation for a finite-dimen- 
sional solution vector on a two-dimensional grid of discrete points. Integrating and 
differentiating matrices based on two-dimensional grids could then be used to approxi- 
mate the respective operators resulting, again, in a standard matrix eigenvalue problem. 

The present work will explore the potential of this approach by considering an 
eigenvalue problem associated with the transverse vibration of a simply-supported rectan- 
gular plate. This problem consists of the biharmonic eigenvalue equation 

02 ~}2 )2 
~x 2 + -  u(x, y)= ~.2u(x, y) (1.1.) Oy 2 

for 0 ~< x ~< A, 0 ~< y ~< B, and the boundary conditions 

u(O, y)  = uxAO, y) = O, 

u(x, O) = u . ( x ,  O) = O, 

u(A, y )=Uxx(A,  y)=O, 
u(x, B) = Uyy(X, B) =0. 

(1.2) 

In Section 2, equation (1.1) will be reformulated as an integro-partial differential equation 
consistent with the form of the boundary conditions (1.2). Because (1.2) involves condi- 
tions on u(x, y) itself at all four boundaries, the present approach retains u itself as the 
dependent variable. Conversion to a matrix eigenvalue problem will now require the 
derivation of appropriate integrating and differentiating matrices based on a two-dimen- 
sional rectangular grid of discrete points. 

One type of integrating matrix for a function of two variables has been previously 
derived [5]. This matrix may be used in two-dimensional problems whose reformulation is 
possible using an integrating matrix alone, e.g., the plate analogue of a beam with 
cantilevered boundary conditions. Unfortunately, this matrix is not suitable for the 
present purposes as its derivation requires that the spacing of the grid points be uniform 
in at least one direction. The boundary conditions (1.2) lead to a reformulation which will 
require the use of differentiating matrices to approximate partial derivatives with respect 
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to both x and y. To preserve accuracy, the computational grid must now include points 
"close" to all four boundaries giving non-uniform grid spacing in both directions [7]. 

Generalized integrating matrices for functions of two variables whose values are 
known on non-uniform rectangular grids are derived in the Appendix. Differentiating 
matrices which approximate partial derivatives on non-uniform rectangular grids are also 
derived, as are matrices which evaluate quantities at boundary grid points. The only 
restriction in this derivation is that the grid sub-units [xj ~< x ~< xj+l, Yk ~<Y ~<Yk+~] 
should be rectangles. 

In Section 3, appropriate integrating and differentiating matrices are used to ap- 
proximate the reformulated eigenvalue problem by a matrix eigenvalue problem involving 
a "stacked" column vector. Numerical calculations are presented for a rectangle with 
A = 2 and B = 1 on a 7-by-7 grid (including near-boundary points). Despite the coarse- 
ness of this grid, good agreement with the exact eigenvalues of (1.1) and (1.2) is obtained. 

2. Reformulation of the eigenvalue problem 

An appropriate reformulation of the two-dimensional eigenvalue problem (1.1) and (1.2) 
is an integro-differential equation whose derivation explicitly uses all eight conditions in 
(1.2). The form of these boundary conditions is such that u(x, y) will be retained as the 
dependent variable. To derive the required reformulation equation (1.1) is first integrated 
twice with respect to y from y to B and from 0 to y. This result is then integrated two 
additional times with respect to x from x to A and from 0 to x. Applying the boundary 
conditions (1.2) now gives 

-2[xux(A, y)+yUy(X, B)] + 2XyUxy(A , B)-b 2u(x,  y)  

= X2{XfoYJ?~lU(~, ~1)d~ d~ +yfyBfoX~u (~, ~1)d~ dB 

+xyfySfxAu(~, 77)d~ d~/+ foYJo~71u(~, ~)d~  d~}. (2.1) 

This equation provides the starting point for approximation of the eigenvalue problem 
(1.1) and (1.2) using integrating and differentiating matrices on a rectangular grid. 

3. Approximation by a matrix eigenvalue problem 

The first step in approximating equation (2.1) by a matrix eigenvalue problem for a 
finite-dimensional solution vector is to discretize this equation on a rectangular grid G of 
discrete points. This will allow the integrating, differentiating, and boundary matrices on 
this two-dimensional grid to be used as operators to approximate the corresponding 
operators in the continuous equation. 
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The two-dimensional grid G may be formed from the cross-product of appropriate 
one-dimensional grids in the x- and y-directions. In particular, let G x be the one-dimen- 
sional grid of M discrete points 

O=Xl <X2 ' ' "  < X M = A  (3.1) 

which discretizes the interval 0 ~< x ~< A, and let Gy be the one-dimensional grid of N 
points 

0 = Y l  < ) ; 2  < " " " <YN = B (3.2) 

which discretizes the interval 0 ~< y ~ B. Neither G x nor Gy need to have uniform spacing. 
Indeed, in actual implementation, to preserve accuracy it will be necessary to choose the 
spacings x 2 - x 1, x g - XM_ 1, Y2 --Yl, and YN --YN--1 relatively small as the formulation 
will involve differentiating matrices [7]. The two-dimensional grid G for the continuous 
region of the boundary-value problem (1.1) and (1.2) may now be taken as the set of MN 
discrete points 

G~" ( ( x i ,  yj): x i E G x ,  y j E G y }  • (3.3) 

Thus, the subunits of the grid G are rectangles which need not have equal areas. 
The straightforward format for displaying values of the solution u(x, y) at the discrete 

grid points of G is an M-by-N matrix [U] with elements U~j = u(xi, Y i). Unfortunately, 
this format is unsuitable for the desired reduction to a matrix eigenvalue problem. Rather, 
it is convenient to arrange the MN values of u on the grid as a "stacked" MN-by-1 
column vector. In particular, the finite-dimensional solution vector (u )  is taken to have 
elements 

u k = u(xi, yj) with k = M ( j -  1) + i (3.4) 

where i = 1 . . . . .  M and j = 1 , . . . ,  N. It should be noted that this format for (u )  is 
x-oriented, i.e., the N groups of M consecutive elements in the stacked vector give values 
of u for a fixed value of y in Gy while x varies in Gx. Because of this orientation, as 
indicated in Appendix A, matrices which approximate integrals and derivatives with 
respect to y will require extra operations in their construction. A general flow chart for 
the construction of both x- and y-operation matrices is given in Figure 1. 

Once equation (2.1) has been discretized, integrating, differentiating, and boundary- 
evaluation matrices on the grid G may be used to obtain a matrix eigenvalue problem 
which provides the required approximations. In particular, the eigenvalue problem for 
(2.1) may be written as 

[G](u) =x2[n](u) (3.5) 

where [G] = [G1] + [G2] + 2[G3], 

[G~] = ([ JRYI[  Y] + [ Y][ JTY])([  X][ BAI[ DX3] - [DX2]), (3.6) 

[G2] = ([ JRXI[ X] + [ XI[ JTXI)([ YI[ BB][ D Y3] - [DY2]), (3.7) 
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One-dimensional grid 
Gs: Sl< s2< ... < s K 

K=M(s= x)or K= N (s= y) 

orm mat! 

x-operation matrices 
[JRX] [JTX] 

[DX] [DX2] [DX3] 

Orientation 
change matrices 

ECXY] ECYX] 

y-operation matrices 

[JRY] [JTY] 

[DY] [DY2] [DY3] 

Figure 1. Flowchart illustrating the formation of matrices which approximate integrals and partial derivatives 
with respect to x and y on the rectangular grid G. 

and 

[G3] = -([ X][ BA][ DX] + [ YI[ BBI[ D Y]) + [ X][ Y][ BA][ BBI[ DX][ D Y ] 

+[II. (3.8) 

In  (3.6) through (3.8), [JRX] and [JTX] approximate  x-integrals f rom 0 to x and f rom x 
to A, respectively, on the two-dimensional grid G while [DX], [DX2], and [DX3] 
approximate  first, second, and third partial derivatives with respect to x on G. Similarly, 
[JRY] and [JTY] approximate  y-integrals f rom 0 to y and f rom y to B, respectively, on 
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G while [DY], [DY2], and [DY3] approximate first, second, and third partial derivatives 
with respect to y. The matrices [BA] and [BB] evaluate quantities a tboundary  points 
with x = A and y = B, respectively. The derivation of these integrating, partial differenti- 
ating, and boundary matrices on the grid G is discussed in Appendix A. [I] is the 
MN-by-MN identity matrix. The MN-by-MN matrices [X] and [Y] are diagonal matrices 
such that if position k in the stacked solution vector corresponds to the point ( x ,  yj) of 
G, then Xkk = x i and Ykk =Yj. 

The matrix [H] in (3.4) may be written as the sum of four matrices [H] = [/-/1] + [/42] 
+ [//3] + [H4] with 

[Ha] = [X][JRY][JTX][Y], (3.9) 

[HE] = [YI[JTY][JRXI[X], (3.10) 

[H31 = [X][YI[JTYI[JTX], (3.11) 

and 

[H4] = [JRYI[JRX][XI[Y]. (3.12) 

To enhance accuracy in calculation of the lower eigenvalues, it is convenient to further 
re-write (3.5) as 

[ A ] ( u )  =~{u} (3.13) 

with 

[A] = [ G ] - I [ H ]  and o~ = 1 /~  2. (3.14) 

To test the accuracy of this matrix eigenvalue approximation to the continuous 
problem (1.1) and (1.2), equation (3:13) was solved on a rectangle with A -- 2 and B = 1. 
Gx was taken to be the seven-point grid consisting of the two end points xl = 0 and 
x7 = 2, two near-boundary points x2 = 0.0001 and x6 = 1.9999, and three interior points 
x3 = 0.5, x4 = 1.0, and x 5 - 1.5. Gy was taken to be the seven-point grid consisting of the 
two endpoints Yl = 0 and Y7 = 1.0, two near-boundary points Y2 = 0.00005 and Y6 = 
0.99995, and three interior points Y3 = 0.25, Y4 = 0.5, and Y5 = 0.75. The implementation 
of (3.6) through (3.12) on this grid thus involves 49-by-49 matrices. However, the size of 
the matrix [A] in the matrix eigenvalue problem (3.13) can be reduced by noting that 
u = 0 at all boundary points. Rows and columns of [A] corresponding to boundary points 
may thus be deleted leading to a 25-by-25 matrix. 

Exact solution of the boundary-value problem (1.1) and (1.2) is of the form 

• p ~ r x  sin qB y Upq(X, y) ~ Cpq sin---A--- (3.15) 

where p and q are integers. The corresponding eigenvalues are 

(3.16) 
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For the present test case with A = 2 and B = 1, the exact values of the two smallest 
eigenvalues are 

k n = 12.337 and ~k21 = 19.739. (3.17) 

Approximate values for these eigenvalues were obtained by solving the matrix eigenvalue 
problem (3.13) on the grid G. Differentiating matrices were based on fourth-degree 
polynomials while integrating matrices were based on fifth-degree polynomials. This 
even/odd degree scheme allows grid points to be centered as much as possible within the 
sliding subgrids on which the differentiating and integrating matrices are based. The 
computations give the values 

Xll = 12.553 and X21 = 17.635. (3.18) 

It must be remarked that G in this test problem is a relatively coarse grid which, when 
boundary and near-boundary points are omitted, has only a total of nine points in the 
interior of the two-dimensional region. Values of these approximations could be improved 
through the inclusion of additional interior points. 

4. Concluding remarks 

The present work has examined an extension of integrating- and differentiating-matrix 
methodology to partial differential equations involving two space variables. Matrices 
which approximate integrals and derivatives on one-dimensional grids are used as a 
starting point to develop matrices which approximate integrals and partial derivatives on 
two-dimensional rectangular grids. The method requires that the original boundary-value 
problem be reformulated to take account of all boundary conditions. Integrating, dif- 
ferentiating, and boundary matrices may then be used as operators to approximate the 
boundary-value problem by a standard matrix problem for a stacked, finite-dimensional 
solution vector. The inclusion of near-boundary points in the grid helps to prevent the 
degradation of accuracy at boundaries associated with differentiating matrices. 

While only two-dimensional rectangular domains have been explicitly considered in 
the present work, a further generalization of the method to three-dimensional domains is 
relatively straightforward. This is due to the use of a stacked colunm vector format for the 
solution vector which allows matrices on the higher-dimensional grid to be obtained from 
matrices on the underlying one-dimensional grids. The primaryrequirement in going to 
three space dimensions is the use of appropriate change matrices analogous to the 
matrices [CXY] and [CYX] of Appendix A. These matrices will shuffle the order of the 
stack to orient it with respect to a given variable and then restore the original orientation 
after an operation with respect to that variable has been approximated. 

Appendix A: Partial differentiating, integrating, and boundary matrices for rectangular 
grids 

Let G be the rectangular grid in (3.3) formed from the two one-dimensional grids G x and 
Gy in (3.1) and (3.2). Let { u} be the MN-by-1 "stacked" column vector defined in (3.4) 
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which gives values of u(x, y) at the points of G. Then, for the present boundary-value 
problem on a rectangle, it is necessary to derive two types of integrating matrices and 
three partial differentiating matrices for each of the two space variables x and y. 

Consider first the matrices which approximate operations with respect to x. The 
"0-to-x" integrating matrix [JRX] on G is an MN-by-MN matrix such that the MN-by-1 

X 

column vector [JRX](u } contains approximate values of the integral f ,  u(~, y) d~ at the 

points of G. In particular, 

[JRg](u} ~--(0, foX2u(~, Yl)d~,'",foAu(~, Yl)d~, 0, foX2u(~, Y2)d~,-.. 

foAu(', Y2)d,,---,0, foX:U(,, yu) d,,..., foAU(,, YN) d') r. 
(A1) 

Similarly, the "x-to-A" integrating matrix [JTX] leads to approximations at points of G 

jx ~ of the integral u(~, y) d~ so that 

(J0 ~ Jx J0 ~ [JTX]{u} = u(~, Yl) d~ , ' " ,  .4 u(~, Yl)d~,O, u(~, y2) d ~ , ' " , 0 , " ' ,  
M - - I  

~ )~ 
fo u( ~, YN ) d~," " , u( ~, Yw ) d~, 0 

XM--  ] 

(A2) 

The x-partial derivative matrix [DX] is an MN-by-MN matrix such that [DX]{u} 
contains approximate values of au/Ox at points of G. Thus, 

[ ~u 
[ D X l ( u }  = | (x~, y,) ~x 

J • • 

k 
~U 

, -~x ( X M ,  Y l ) ,  " " 
0u 

", ~X (X1, Y N ) , ' "  

~u )T 
",-~x (XM, YN) • 

(A3) 

The matrices [DX2] and [DX3] which lead to approximations of second and third partial 
derivatives of u(x, y) with respect to x at points of G have similar definitions. 

The stacked colunm vector (u } has been constructed so as to be x-oriented. It thus 
consists of N segments which contain M elements apiece. In each of these segments, x 
varies through G x for a constant value of y in Gy. The matrices in (A1) to (A3) 
approximate x-operations for fixed values of y. Consequently, use of the present 
stacked-column-vector format will allow x-operation matrices on the rectangular grid G 
to be constructed from the corresponding M-by-M matrices on the one-dimensional grid 
Gx. This construction is most easily accomplished through definition of a "diagonalizing" 
mapping from the set of M-by-M matrices to the set of MN-by-MN matrices. 

Let p and q be integers, and let [A] be a p-by-p matrix. The diagonalizing mapping 
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Diag(p, q, [A]) then assigns to [A] the pq-by-pq matrix [B] obtained by placing q 
matrices [A] along the diagonal of [B] and taking all other elements of [B] to be zero, i.e., 

[B] = Diag(p, q, [ A ] ) =  

-[A] 0 

[A] 

0 [A] 

(A4) 

The x-operation matrices on G may be formed by applying this mapping with p = M and 
q = N to appropriate matrices on the grid G~. 

Consider first the construction of [JRX]. Let f(x) be a function whose values are 
known at the points of Gx, and let ( f } be the M-by-1 column vector which contains these 
values. Further, let [jrx] be an M-by-M integrating matrix which approximates integrals 
of f(x) from 0 to x on G~ so that 

[jrx]{f}=(foX'f( ')d'}.  (AS) 

Comparing equation (A1), segment-by-segment, with (A5) now shows that 

[JRX] = Diag(M, N, [jrx]). (A6) 

The matrix [jrx] (and hence [JRX]) is not unique, but depends on both the number of 
points included in the sliding subgrids of G x and the manner in which f(x) is approxi- 
mated on these subgrids. The present work uses the integrating matrix [jrx] for one-di- 
mensional non-uniform grids developed in [4]. 

To obtain the second required integrating matrix [JTX] on the rectangular grid G, let 
[fix] be an integrating matrix on G~ such that 

[jtxl{ f ) = { fxAf(~) d~ ). (A7) 

Then, a segment-by-segment comparison of (A2) and (A7) shows that 

[ JTX] = Diag(M, N, [fix]). (A8) 

Differentiating matrices on one-dimensional non-uniform grids have been derived in 
[7]. Let the matrices which approximate first, second, and third derivatives of f(x) at 
points of Gx be denoted, respectively, by [dx], [dx2], and [dx3]. As is the case with 
integrating matrices, these differentiating matrices are not unique. Further, in the usual 
case where the sliding subgrids contain fewer than all M points of Gx, [dx2] and [dx3] 
cannot be obtained by simply squaring or cubing the matrix [dx]. Rather, these matrices 
must be obtained directly from approximations to the second and third derivatives of 
f(x) on the sliding subgrids. 

The three matrices [DX], [DX2], and [DX3] which approximate partial derivatives 
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with respect to x of u(x, y) at points of G may now be constructed from [dx], [dx2], and 
[dx3] using the diagonalizing mapping. In particular, 

[DX] = Diag(M, N, [dx]), [DX2] = Diag(M, N, [dx2]), 

[DX3] = Diag(M, N, [dx3l). (A9) 

For consistency, the differentiating matrices used in the present work were based on the 
same subgrid approximation scheme as was used for the integrating matrices on G x. 

Consider next derivation of the matrices which approximate operations with respect to 
y on the rectangular grid G. The required integrating matrices for this variable are the 
"0-to-y" integrating matrix [JRY] which approximates the integral u(x, 7)d~  at 

points of G, and the "y-to-B" integrating matrix [JTY] which approximates the integral 

fyu(x, 7)d~.  The product of these MN-by-MN matrices with (u} are the MN-by-1 

column vectors 

[JRY](u} =~ (0,'' ',0, J0Y2u(x1, 17) dg/,... , fY2u(XM, ~1) dT1,"" 
(AIO) 

and 

(/o /o B BU( X1 [JTY](u} -- , rl) d~,... U(XM, 71) dvl,'", 

fyB U(Xl, r/)d,o,. ,  sB U(XM, 71) dB, O,...,O) T • ~ o 

N - 1  Y N - 1  

(Al l )  

Let g(y) be a function whose values are known at the points of the one-dimensional 
grid Gy, and let ( g )  be the N-by-1 column vector which contains these values. Further, 
let [jry] and [jty] be integrating matrices on Gy such that 

[jry](g) = {foY'g(7/)dr/) and [jty]{g) --- {fff g(~l) d~/}. (A12) 

Because (u}, as defined, is x-oriented, the integrating matrices [JRY] and [JTY] on G 
cannot be formed using the single mapping (A4) on the corresponding matrices for the 
one-dimensional grid Gy. As [JRY] and [JTY] approximate integrals with respect to y 
for fixed values of x, two additional mappings which convert from x- to y-orientation 
and from y- to x-orientation will also be required. 

If the values of u(x, y) at the MN points of the rectangular grid G are written as an 
MN-by-1 stacked column vector { v } whose format is y-oriented, then the elements of 
{v} are 

v k = u(xi, yj) where k = N( i -  1) + j .  (A13) 
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Thus, the vector (o } consists of M segments which contain N elements apiece. In each 
segment, y varies in Gy for a fixed value of x in Gx. If ( v } and not { u } had been chosen 
as the format for the solution vector, then [JRY] and [JTY] could be formed from [jry] 
and [fly] directly using the diagonalizing mapping (A4) with p = N and q = M. 

An x-oriented vector (u  } may be associated with its corresponding y-oriented vector 
(o } through a mapping Cxy from the set of MN-by-1 column vectors into itself so that 
Cxy(( u }) = (v }. In symbolic terms, if the values of u(x, y) on the rectangular grid G are 
arranged in an M-by-N array, then the effect of applying the mapping Cxy is to produce 
an N-by-M array which is the transpose of the original. For the present purposes, the 
mapping Cxy may be carried out by multiplying (u } by an MN-by-MN matrix [CXY] so 
that 

[CXYlfu} = (v} .  (A14) 

The matrix [CXY] may be written as a stack of M, N-by-MN matrices 

[ c x Y ]  --- 
[CXYm] 1" 

[ Cxy(M)] 
(A15) 

If [eft is the j- th unit vector in M-dimensional real space, i.e., a row vector with a one in 
the j- th position and zeros in the other M - 1 positions, then each matrix in (A15) can be 
written in the form 

[CXY 0) ] = 

-[e 3 0 

[e3 

o [e 3 

(A16) 

Tim matrices in (A15) thus have the row vector [ej] along the diagonal and zeros 
elsewhere. 

The mapping Cxy is one-to-one and hence invertable. Let the inverse mapping be 
denoted by Cyx so that Cyx(( v }) = (u  }. Thus, when applied to a y-oriented vector, Cyx 
restores the standard x-orientation. This mapping may be carried out by multiplying { v } 
by the MN-by-MN matrix [CYX] so that 

[CYX]{v} = (u} .  (A17) 

Because of the inverse relationship of Cxy and Cyx, [CYX] = [CXY] -1. 
Having defined the mappings which change the format of a stacked column vector 

from x- to y-orientation and back again, the procedure which uses the N-by-N integrat- 
ing matrix [jry] on Gy to produce the the vector [JRY]{ u} defined in (A10) may now be 
given. The vector (u  } is first multiplied by [CXY] to produce a y-oriented format. It is 
then multiplied by the matrix Diag(N, M, [jry]) to give a vector which consists of M 
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segments, each of which approximates the integral of u(x, y) from 0 to y for a fixed 
value of x. Finally, the original x-orientation is restored through multiplication by 
[CYX]. This process implies 

[ JRY] = [ CYX] Diag[N, M, [jry])[ CXY]. (A18) 

The matrix [JTY] may likewise be formed in this manner from the integrating matrix 
[fly] on Gy. Hence, 

[ JTY] = [CYX] Oiag(N, M, [jty])[CXY]. (A19) 

The MN-by-MN matrix [DY], which approximates partial derivatives with respect to y 
on the rectangular grid G, is defined by 

3u Ou Ou Ou )r 
[DYI{u} = "~yy (Xl, e l ) , ' ' ' ,  ~y (XM, Y,),''',-~y (Xl' YN),'' ', "-~y (XM, YN) " 

(A20) 

Let [dy] be an N-by-N differentiating matrix on the one-dimensional grid Gy such that 

[dy]{g}~{g'}.  

Then, [DY] can be formed from [dy] through the relation 

[DY] = [CYX] Diag(N, M, [dy])[cxr]. 

(A21) 

(A22) 

Similarly, let [dy2] and [dy3] be matrices which approximate second and third derivatives 
of g(y) on Gy. Then, replacing [dy] in (A22) by [dy2] or [dy3] leads to the matrices [DY2] 
and [DY3], respectively, which approximate second and third partial derivatives of 
u(x, y) with respect to y on G. 

Matrices which evaluate quantities at the boundaries x = A and y = B are the final 
items needed to construct the matrices [G] and [H] in the matrix reformulation of (1.1) 
and (1.2). The MN-by-MN boundary matrix [BA] is such that [BA]{u} gives values of 
u(A, y) at points of the rectangular grid G. In particular, 

[Bal(u} = ( u ( A ,  yl ) , ' " ,u(A,  y,),  u(A, y2), ' . ' ,u(A, Y2) 

, . . . ,  u(A, B),. . . ,  u(A, B)) r (A23) 

[BA] may be written as a stack of N, M-by-MN matrices. If [baj] is the j-th matrix in this 
stack ( j  = 1,. . . ,  N), then the element in the i-th row (i = 1 . . . . .  M)  and k-th column of 
[bail is unity if k =jM and zero otherwise. Similarly, the MN-by-MN matrix [BB] is such 
that [BB](u} gives values of u(x, B) at points of G, i.e., 

[OO](u} = (g(xl, O ) , ' ' ' , u ( x  M, O ) , " ' , g ( x l ,  B), ' ' ' ,U(XM,  O)) T. (A24) 
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[BB] may also be written as a stack of N, M-by-MN matrices. 

[ B s ] =  . . ( A 2 5 )  

[ [bb]J  

However, each of the N matrices in the stack (A25) is identical. The right-hand block of 
M columns of [bb] is simply the M-by-M identity matrix. All other elements of [bb] are 
zero. 
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